首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1908篇
  免费   353篇
  国内免费   75篇
化学   93篇
晶体学   8篇
力学   838篇
综合类   14篇
数学   259篇
物理学   1124篇
  2023年   13篇
  2022年   33篇
  2021年   33篇
  2020年   62篇
  2019年   52篇
  2018年   53篇
  2017年   64篇
  2016年   71篇
  2015年   68篇
  2014年   97篇
  2013年   133篇
  2012年   100篇
  2011年   139篇
  2010年   91篇
  2009年   124篇
  2008年   119篇
  2007年   107篇
  2006年   116篇
  2005年   82篇
  2004年   90篇
  2003年   80篇
  2002年   69篇
  2001年   56篇
  2000年   65篇
  1999年   35篇
  1998年   50篇
  1997年   40篇
  1996年   32篇
  1995年   20篇
  1994年   23篇
  1993年   37篇
  1992年   17篇
  1991年   19篇
  1990年   23篇
  1989年   20篇
  1988年   10篇
  1987年   11篇
  1986年   9篇
  1985年   12篇
  1984年   8篇
  1983年   5篇
  1982年   8篇
  1981年   13篇
  1980年   5篇
  1979年   5篇
  1978年   4篇
  1977年   4篇
  1976年   2篇
  1974年   2篇
  1971年   2篇
排序方式: 共有2336条查询结果,搜索用时 31 毫秒
71.
The HLLEM scheme is a popular contact and shear preserving approximate Riemann solver that is known to be plagued by various forms of numerical shock instability. In this paper, we clarify that the shock instability exhibited by this scheme is primarily triggered by the spurious activation of the antidiffusive terms present in the first and third Riemann flux components on the transverse interfaces adjoining the shock front due to numerical perturbations. These erroneously activated terms are shown to counteract the favorable damping mechanism provided by its inherent HLL-type diffusive terms, causing an unphysical variation of the conserved quantity ρu both along and across the numerical shock. To prevent this, two distinct strategies are proposed termed as S elective W ave M odification and A nti D iffusion C ontrol. The former focuses on enhancing the quantity of the favorable HLL-type dissipation available on these critical flux components by carefully increasing the magnitudes of certain nonlinear wave speed estimates, while the latter focuses on directly controlling the magnitude of these critical antidiffusive terms. A linear perturbation analysis is performed to gauge the effectiveness of these cures and to estimate a von Neumann–type stability bounds on the CFL number associated with their use. Results from a variety of classic shock instability test cases show that the proposed strategies are able to provide excellent shock stable solutions even on grids that are highly elongated across the shock front without compromising the accuracy on inviscid contact or shear dominated viscous flows.  相似文献   
72.
The current paper presents a thorough study on the pull-in instability of nanoelectromechanical rectangular plates under intermolecular, hydrostatic, and thermal actuations. Based on the Kirchhoff theory along with Eringen's nonlocal elasticity theory, a nonclassical model is developed. Using the Galerkin method(GM), the governing equation which is a nonlinear partial differential equation(NLPDE) of the fourth order is converted to a nonlinear ordinary differential equation(NLODE) in the time domain. Then, the reduced NLODE is solved analytically by means of the homotopy analysis method. At the end, the effects of model parameters as well as the nonlocal parameter on the deflection, nonlinear frequency, and dynamic pull-in voltage are explored.  相似文献   
73.
The low dose limit and the accuracy of high sensitivity MOS ionizing radiation dosimeters fabricated at LAAS-CNRS are investigated.  相似文献   
74.
75.
The moving particle semi‐implicit (MPS) method has been widely applied in free surface flows. However, the implementation of MPS remains limited because of compressive instability occurred when the particles are under compressive stress states. This study proposed an inter‐particle force stabilization and consistency restoring MPS (IFS‐CR‐MPS) method to overcome this numerical instability. For inter‐particle force stabilization, a hyperbolic‐shaped quintic kernel function is developed with a non‐negative and smooth second order derivative to satisfy the stability criterion under compressive stress state. Then, a contrastive study is conducted on the contradiction between the common understanding of the conventional MPS hyperbolic‐shaped kernel function and its performance. The result shows that the conventional MPS hyperbolic‐shaped kernel function can easily cause violent repulsive inter‐particle force and then lead to the compressive instability. Therefore, the first order derivative of the modified hyperbolic‐shaped quintic kernel function is recommended as the form of the contribution of the neighbor particles to achieve a more stable inter‐particle repulsive force. For consistency restoring, the Taylor series expansion and the hyperbolic‐shaped quintic kernel are combined to improve the accuracy of the viscosity and pressure calculation. The IFS‐CR‐MPS algorithm is subsequently verified by the inviscid hydrostatic pressure, jet impacting, and viscous droplet impacting problems. These results can be used for choosing kernel function and the contribution of neighbor particles in particle methods. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
76.
Numerical computations are presented of the BGK-like states that emerge beyond the saturation of the bump-on-tail instability in the Vlasov-Poisson system. The stability of these states towards subharmonic perturbations is explored in order to gauge whether the primary bump-on-tail instability always suffers a secondary instability that precipitates wave mergers and coarsening of the BGK pattern. Because the onset of the bump-on-tail instability occurs at finite wavenumber, and the spatially homogeneous state is not itself unstable to spatial subharmonics, it is demonstrated that mergers and coarsening do not always occur, and the dynamics displays a richer spatio-temporal complexity.  相似文献   
77.
Tower buildings can be very sensitive to dynamic actions and their dynamic analysis is usually carried out numerically through sophisticated finite element models. In this paper, an equivalent nonlinear one-dimensional shear–shear–torsional beam model immersed in a three-dimensional space is introduced to reproduce, in an approximate way, the dynamic behavior of tower buildings. It represents an extension of a linear beam model recently introduced by the authors, accounting for nonlinearities generated by the stretching of the columns. The constitutive law of the beam is identified from a discrete model of a 3D-frame, via a homogenization process, which accounts for the rotation of the floors around the tower axis. The macroscopic shear strain in the equivalent beam is produced by the bending of columns, accompanied by negligible rotation of the floors. A coupled nonlinear shear–torsional mechanical model is thus obtained. The coupling between shear and torsion is related to a non-symmetric layout of the columns, while mechanical nonlinearities are proportional to the slenderness of the columns. The model can be used for the analysis of the response of tower buildings to any kind of dynamic and static excitation. A first application is here presented to investigate the effect of mechanical and aerodynamic coupling on the critical galloping conditions and on the postcritical behavior of tower buildings, based on a quasi-steady model of aerodynamic forces.  相似文献   
78.
The three-dimensional dynamics of a pair of counter-rotating streamwise vortices that are present in the wake of an ICE3 high-speed train typical of modern, streamlined vehicles in operation, is investigated in a 1/10th-scale wind-tunnel experiment. Velocity mapping, frequency analysis, phase-averaging and proper orthogonal decomposition of data from high-frequency multi-hole dynamic pressure probes, two-dimensional total pressure arrays and one-dimensional multi-hole arrays was performed. Sinusoidal, antisymmetric motion of the pair of counter-rotating streamwise vortices in the wake is observed. These unsteady characteristics are proposed to be representative of full-scale operational high-speed trains, in spite of the experimental limitations: static floor, reduced model length and reduced Reynolds number. This conclusion is drawn from favourable comparisons with numerical literature, and the ability of the identified characteristics to explain phenomena established in full-scale and scaled moving-model experiments.  相似文献   
79.
Using the method of the parameter expansion up to the third order, explicitly investigates surface tension effect on harmonics at weakly nonlinear stage in Rayleigh-Taylor instability (RTI) for arbitrary Atwood numbers and compares the results with those of classical RTI within the framework of the third-order weakly nonlinear theory. It is found that surface tension strongly reduces the linear growth rate of time, resulting in mild growth of the amplitude of the fundamental mode, and changes amplitudes of the second and third harmonics, as is expressed as a tension factor coupling in amplitudes of the harmonics. On the one hand, surface tension can either decrease or increase the space amplitude; on the other hand, surface tension can also change their phases for some conditions which are explicitly determined.  相似文献   
80.
报道了放电引发的非链式HF(DF)激光器中的激活介质由电子碰撞负离子分离引起的电离非稳定性。这种非稳性出现在电极空间分离、脉冲CO2激光加热的基于sF6的混合气体的大体积放电中。实验研究了自引发体放电过程中由激光加热引起的放电等离子体的自组织现象以及由此在放电间隙的大部分区域形成的准周期等离子体结构。重点分析了等离子体结构随气体温度和注入能量的变化,讨论了等离子体自组织对电子碰撞分离不稳定性所产生的影响,解释了混合气体中由于电子碰撞使负离子消失导致的单等离子体通道移动的产生机理。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号